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Motivation

Oxymethylene ethers (OMEs) are a high-potential class of sustainable synthetic fuels when produced via carbon capture and renewable electricity. Their original backbone
structure, composed of a carbon-oxygen atoms alternation, is promising for soot reduction in exhaust gases. A complete understanding of the pyrolysis and combustion
mechanisms, covering the low- and high-temperature range, is a prerequisite to introduce OMEs as fuels on a large scale.
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Modeling approach
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Reaction families Reaction identification > >
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Low-temperature oxidation of oxyme’rhylene ether-2 (OME 2)
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- H-abstraction on the fuel molecule is mainly carried out by O atoms and OH radicals due to : £ . High CO/CO, ratio after the cool flame caused
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Conclusions & Work-in-progress

» A first principles based kinetic model for the low-temperature oxidation of oxymethylene ether-2 (OME-2) has been developed.

« The model was validated with novel data of a lean DME/OME-2 cool flame stabilized in a stagnation plate burner.

» Accounting for appropriate kinetics for the second QOOH addition on molecular oxygen leading to the formation of ketohydroperoxides and newly calculated
reaction rate coefficients of hydrogen abstraction by ozone and atomic oxygen are expected to improve the model performance.
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